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 CH 3: Load and Stress Analysis 

Machine elements carry different types of loads (concentrated, distributed, axial, 
lateral, moments, torsion, etc.) according to the function and configuration of each 
element. These loads cause stresses of different types and magnitudes in different 
locations in the element. 

When designing machine elements it is important to locate the critical locations (or 
sections) and to evaluate the stress at the critical sections to ensure the safety and 
functionality of the machine element. 

Equilibrium and Free-Body Diagrams 

Equilibrium of a body requires both a balance of forces (to prevent translation) and 
balance of moments (to prevent rotations). 

∑ 𝐹 = 0 

∑ 𝑀 = 0 

 A free body diagram (FBD) is a sketch of an element or group of connected 
elements that shows all the forces acting on it (applied loads, gravity forces, and 
reactions)  

 

 

 

See Example 3-1 from text 
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Shear and Moment in Beams 

Shear and moment diagrams are important in locating the critical sections in a beam 
(sections with maximum shear or moment) such that stresses are evaluated at these 
sections. 

 The sign convection for shear force and bending moment is: 

 

 

 

 

Shear force and bending moment are related by the equation 

 

                                𝑉 =  
𝑑𝑀

𝑑𝑥
            (Shear is the slope of the moment diagram) 

 

When a distributed load 𝑞(𝑥) is applied to the beam 

 

𝑞 =  
𝑑𝑉

𝑑𝑥
=

𝑑2𝑀

𝑑𝑥2
 

 

Integrating the relations we get: 

∫ 𝑞 𝑑𝑥 =  ∫ 𝑑𝑉 = 𝑉2 − 𝑉1

𝑉2

𝑉1

𝑥2

𝑥1

 

 

∫ 𝑉 𝑑𝑥 =  ∫ 𝑑𝑀 = 𝑀2 − 𝑀1

𝑀2

𝑀1

𝑥2

𝑥1

 

 

 To draw shear and moment diagrams: 
- Draw the FBD & find reactions using equilibrium. 
- Make sections and draw their FBD and find 𝑉 & 𝑀. 

The change in shear force 

between sections 1 & 2 is 

equal to the area under 

the loading diagram 

The change in moment 

between 1 & 2 is equal to 

the area under the shear 

diagram 
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Example: Draw the shear & moment 
diagrams for the beam shown. 

Solution:  

0 < 𝑥 < 2 

𝑉 = −0.5 𝑘𝑁 

𝑀 = −0.5𝑥 𝑘𝑁. 𝑚  

 

2 < 𝑥 < 3 

𝑉 = −0.5 𝑘𝑁 

    𝑀 − 3 + 0.5𝑥 = 0 

𝑀 = 3 − 0.5𝑥 𝑘𝑁. 𝑚 

 3 < 𝑥 < 4 

 −0.5 + 2 − 𝑉 = 0 

𝑉 = 1.5 𝑘𝑁 

 𝑀 − 2(𝑥 − 3) − 3 + 0.5𝑥 = 0 

                       𝑀 = 1.5𝑥 − 3 𝑘𝑁. 𝑚 

 

 

4 < 𝑥 < 6 

 

 

 

−0.5 + 2 − 3(𝑥 − 4) − 𝑉 = 0 

𝑉 = −3𝑥 + 13.5 𝑘𝑁 

𝑀 + 3(𝑥 − 4) [
(𝑥 − 4)

2
] − 2(𝑥 − 3) 

            −3 + 0.5𝑥 = 0 

𝑀 = −1.5𝑥2 + 13.5𝑥 − 27 𝑘𝑁. 𝑚 

 

 

 

∑ 𝑀𝐴 = 0 

  −3 + 2(3) − 6(5) + 𝑅𝐵(6) = 0                                                                                                        

              𝑅𝐵 = 4.5 𝑘𝑁 

∑ 𝐹𝑦 = 0 

𝑅𝐴 + 2 − 6 + 4.5 = 0 

         𝑅𝐴 = −0.5 𝑘𝑁 = 0.5 𝑘𝑁 ↓ 
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Singularity Functions 

When the loading is not simple, obtaining the shear and moment diagrams using 
sections or integrations become difficult. 

The method of singularity functions is used when loading is complicated where it 
simplifies integration across discontinuities.  The advantage of using singularity 
functions is that it permits writing analytical expressions for shear and moment over a 
range of discontinuities (no need for intervals). 

 A singularity functions of 𝑥 is written as:  
 

𝐹𝑛(𝑥) =< 𝑥 − 𝑎 >𝑛 
 

𝑎 : Constant distance on the 𝑥 axis equal to the value of 𝑥 where the 
discontinuity occurs. 

𝑛 : Any integer (positive or negative including zero). 
 

 Rules of the singularity functions: 
 

- 𝑛 > 0  (𝑥 ≥ 𝑎 )  →    𝐹𝑛(𝑥) = (𝑥 − 𝑎)𝑛 
(𝑥 < 𝑎 )  →    𝐹𝑛(𝑥) = 0 

- 𝑛 = 0  (𝑥 ≥ 𝑎 )  →    𝐹𝑛(𝑥) = 1 
(𝑥 < 𝑎 )   →    𝐹𝑛(𝑥) = 0 

- 𝑛 < 0  (𝑥 = 𝑎 )  →    𝐹𝑛(𝑥) = 1 
(𝑥 ≠ 𝑎 )  →    𝐹𝑛(𝑥) = 0 

- Integration 

    𝑛 ≥ 0   ∫ < 𝑥 − 𝑎 >𝑛 𝑑𝑥 =
<𝑥−𝑎>𝑛+1

𝑛+1
  

   𝑛 < 0  ∫ < 𝑥 − 𝑎 >𝑛 𝑑𝑥 = < 𝑥 − 𝑎 >𝑛+1 

- Derivation 

       𝑛 ≥ 1  
𝑑

𝑑𝑥
< 𝑥 − 𝑎 >𝑛= 𝑛 < 𝑥 − 𝑎 >𝑛−1 

   𝑛 < 1  
𝑑

𝑑𝑥
< 𝑥 − 𝑎 >𝑛=  < 𝑥 − 𝑎 >𝑛−1 

 

 

Evaluation 
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 The singularity functions for the common types of loading are:  

 

 

 

 

 
 
 
 
 
 
 

 

Example: derive the expressions for loading, shear-
force and bending moment for the beam shown. 

- Evaluate 𝑉 & 𝑀 at 𝑥 = 4.5 𝑚 

Solution:  

𝑞(𝑥) = −0.5 < 𝑥 >−1+ 3 < 𝑥 − 2 >−2+ 2 < 𝑥 − 3 >−1− 3 < 𝑥 − 4 >0+ 4.5 < 𝑥 − 6 >−1 

𝑉 = ∫ 𝑞 𝑑𝑥 = −0.5 < 𝑥 >0+ 3 < 𝑥 − 2 >−1+ 2 < 𝑥 − 3 >0− 3 < 𝑥 − 4 >1+ 4.5 < 𝑥 − 6 >0  

 𝑉(𝑥 = 4.5) = −0.5(1) + 3(0) + 2(1) − 3(4.5 − 4)1 + 4.5(0) = 0 𝑘𝑁 

𝑀 = ∫ 𝑉 𝑑𝑥 = −0.5 < 𝑥 >1+ 3 < 𝑥 − 2 >0+ 2 < 𝑥 − 3 >1− 1.5 < 𝑥 − 4 >2+ 4.5 < 𝑥 − 6 >1  

 𝑀(𝑥 = 4.5) = −0.5(4.5) + 3(1) + 2(4.5 − 3)1 − 1.5(4.5 − 4)2 + 4.5(0) = 3.375 𝑘𝑁. 𝑚 

 

Note: It is not necessary to find the reacitons before using the singularity 
functions where they can be evaluted from the shear and moment 
equations by evaluating at 𝑥 < 0 or 𝑥 > 𝑙  and knowing that both 
𝑉 & 𝑀 = 0 at that value of 𝑥. 

 When there is a distibuted loading that ends before the end of the beam, it 
needs to be turned-off 

𝑞(𝑥) = 𝑀 < 𝑥 − 𝑎 >−2 

 
𝑞(𝑥) = 𝑃 < 𝑥 − 𝑎 >−1 

𝑞(𝑥) = 𝑤0 < 𝑥 − 𝑎 >0 

𝑞(𝑥) =
𝑤0

𝑏
< 𝑥 − 𝑎 >1 

𝑞(𝑥) = 𝑤0 < 𝑥 − 𝑎 >0−
𝑤0

𝑏
< 𝑥 − 𝑎 >1 

𝑞(𝑥) =< 𝑥 − 𝑎 >2 

- Concentrated  

moment 

- Concentrated  

force 

-  Step (uniform 

distributed load) 

- Ramp 

- Inverse Ramp 

- Parabolic 
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Examples: 

 𝑞(𝑥) = ⋯ − 10 < 𝑥 − 3 >0+ 10 < 𝑥 − 7 >0 …  

 

 

𝑞(𝑥) = ⋯ −
5

2
< 𝑥 − 4 >1+

5

2
< 𝑥 − 6 >1 

                                                                 +5 < 𝑥 − 6 >0 …  

Stress 

Stress is the term used to define the intensity and direction of the internal forces 
acting at a given point on a particular plane. 

The average stress is defined as force acting over an area 

𝜎 =
𝑃

𝐴
 

The stress at a point on a cross-section is thus  

 

𝜎 = lim
∆𝐴→0

∆𝑃

∆𝐴
=

𝑑𝑃

𝑑𝐴
 

 
- Which is a vevtor having magnitude and direction 

In general, the stress at a point on a cross-section will have 
components normal and tangential to the surface, which are 
named as normal steress 𝜎 and shear stress 𝜏.  

Cartesian Stress Components 

The general 3D state of stress at a given point can be shown 
using a stress element. 

 
- For normal:   𝜎𝑥   

- For shear:      𝜏𝑦𝑧 

 

on the (x) face in the 

(x) direction 

 

in the (z) Direction  

 

on the (y) face. 
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 Sign convection 
- Positive stress : (+) face & (+) direction  

or (-) face & (-) direction. 
- Negative stress : (-) face & (+) direction  

or (+) face & (-) direction.  

 

- Thus, for normal stress tensile stress is positive & compressive stress is 
negative. 

 There are nine stress components, but moment equilibrium requires that: 

                                   𝜏𝑥𝑦 = 𝜏𝑦𝑥  , 𝜏𝑦𝑧 = 𝜏𝑧𝑦 ,  𝜏𝑥𝑧 = 𝜏𝑧𝑥 

 
- Thus, there are only six independent stress components, three normal and 

three shear. 

 

 When the stresses on one of the surfaces is zero, the 
state of stress is called plane stress and the stress 
components reduce to three: 𝜎𝑥, 𝜎𝑦 & 𝜏𝑥𝑦. 

  

Mohr’s Circle for Plane Stress 

Consider a wedge shaped element of unit depth subjected to plane stress. 

- Equilibrium of forces in the direction of 𝜎 requires 
that: 

  
This reduces to:  

𝜎 = 𝜎𝑥𝑐𝑜𝑠2Ø + 𝜎𝑦𝑠𝑖𝑛2Ø + 2𝜏𝑥𝑦 𝑠𝑖𝑛Ø𝑐𝑜𝑠Ø 
 

Using trigonometric identities it reduces to: 

𝜎 =
𝜎𝑥+𝜎𝑦

2
+

𝜎𝑥−𝜎𝑦

2
𝑐𝑜𝑠2Ø + 𝜏𝑥𝑦 𝑠𝑖𝑛2Ø  (1) 

Similarly, by summing forces in the 𝜏 direction we can get: 
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𝜏 = −
𝜎𝑥−𝜎𝑦

2
𝑠𝑖𝑛2Ø + 𝜏𝑥𝑦𝑐𝑜𝑠2Ø  (2) 

 

 These two equations are called the plane-stress transformation equations, where 
they can be used to find the 𝜎 & 𝜏 in any desired direction defined by an angle Ø 
(measured from the positive 𝑥 axis). 

To find the maximum and minimum values of stress, we differentiate the 𝜎 equitation 

and set the result equal to zero. 

𝑑𝜎

𝑑Ø
= −(𝜎𝑥 − 𝜎𝑦)𝑠𝑖𝑛2Ø + 2 𝜏𝑥𝑦𝑐𝑜𝑠2Ø = 0  

Solving for angle Ø𝑝 we get: 

𝑡𝑎𝑛2Ø𝑝 =
2𝜏𝑥𝑦

𝜎𝑥 − 𝜎𝑦
 

- The angle Ø𝑝 is called the principal angle where its two values define the 

directions of the max and min normal stresses. 
 
Substituting the values of Ø𝑝 in the 𝜎 and 𝜏 equations we get: 

  

 
 
 

-  
- At this angle,Ø𝑝, the normal stresses are maximum (𝜎1) and minimum (𝜎2) 

and the shear stress 𝜏 = 0. 

 This direction is called the principal direction and the stresses are called the 
principal normal stress. 

Similarly, finding the angle that defines the direction associated with max and min 
values of shear stress, we get: 

𝑡𝑎𝑛2∅𝑠 = −
𝜎𝑥−𝜎𝑦

2𝜏𝑥𝑦
 

 

𝜎1, 𝜎2 =  
𝜎𝑥 + 𝜎𝑦

2
± √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2  

 𝜏 = 0  

 

 

 

The difference between the max 

shear stress angle ∅𝑠 and the 

principal angle ∅𝑝 is 45 degrees 
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- The principal shear stress and the corresponding value of normal stress are 
found by substituting ∅𝑠 in equations 1 and 2 

  

 

 

 

 

Equations 1 and 2 define a circle in the 𝜎 - 𝜏 plane. This circle is known as Mohr’s circle, 
where it provides a convenient method of graphically visualizing the state of stress and 
it can be used to find the principal stresses as well as performing stress transformation. 

 

 Steps of constructing Mohr’s Circle:  
- Given σ𝑥 , σ𝑦 & 𝜏 𝑥𝑦 

- Draw the state of stress on a stress element. 

- Draw the 𝜎 and 𝜏 axis and locate the center at (
σ𝑥+σ𝑦

2
, 0) . 

- Locate the two points that define the state of stress  
For the shear stress: if it tends to rotate the element ”CW”  it will be 
located above the 𝜎 axis, and if it tends to rotate “CCW” it will be drawn 
below the 𝜎 axis. The circle will pass through the two points and they will 
be on opposite sides. 

- The radius of the circle is equal to: 

           𝑟 = √(
σ𝑥 − σ𝑦

2
)

2

+ 𝜏𝑥𝑦
2  

- The principal normal stresses are located 
on the intersection points of the circle 
with 𝜎 axis, and they have the values: 

    𝜎1,2  =  𝑐𝑒𝑛𝑡𝑒𝑟 ±  𝑟𝑎𝑑𝑖𝑢𝑠    

- The max shear stress is equal to the 
radius.  

- The direction of the principal axis, 

𝜏1,2 = ±√(
𝜎𝑥−𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2 .  

𝜎 =
𝜎𝑥 + 𝜎𝑦

2
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measured from the 𝑥 direction, is found by determining the angle 2Øp from 
the circle and rotating in the same direction.  

 

Example: Given the plane stress σ𝑥 = 9 𝑀𝑃𝑎  , σ𝑦 = 19 𝑀𝑃𝑎  , 𝜏𝑥𝑦 = 8 𝑀𝑃𝑎 

a) Draw Mohr’s circle and find the principal normal stress 𝜎1,2 and the maximum 
shear stress 𝜏1,2 

b) What is the state of stress when the axes are rotated 30˚ CCW 
 

Solution:  

Center: 𝜎𝑐 =
𝜎𝑥+ 𝜎𝑦

2
 = 

9+19

2
= 14 𝑀𝑃𝑎 

Radius:  𝑟 = √(14 − 9)2 + (8)2 = 9.43 𝑀𝑃𝑎 

a) σ1,2 = 14 ± 9.43 = 23.43 , 4.57 MPa 
τ1,2 = ± 9.43 MPa 

2Øp = tan-1 8

(14−9)
 = 58˚ → Øp = 29˚ 

2Øs = 90 – 58 = 32˚  → Øs = 16˚ 
 
 
 
 

b) Performing a rotation of (30˚ x 2) CCW from the current state of stress: 

 σx = 14 + 9.43 cos (180 – 58 - 60) = 18.43 MPa 

 σy = 14 - 9.43 cos (62) = 9.57 MPa  

 τxy = 9.43 sin(62) = 8.33 MPa 

 

Principal normal stresses 

 

Principal shear 
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General Three-Dimensional Stress 

For the case of 3D stress, there are six components of stress and thus there are three 
principal normal stress components and three principal shear stresses. 

- The three principal stress σ1 , σ2 , σ3 , are found as the three roots of the cubic 
equation:  

 σ3 - (σx + σy + σz) σ
2 + (σx σy + σx σz + σy σz - τ

2
xy - τ

2
yz - τ

2
zx) σ 

  -( σx σy σz + 2τxy τyz τzx - σx τ
2

yz - σy τ
2

zx - σz τ
2

xy) = 0 

 
- The principal stresses are labeled such that σ1 > σ2 > σ3 
- After finding principal stresses the 3D Mohr’s Circle can be 

drawn to help visualizing the state of stress. 
- If the principal directions are also needed, tensor notation 

needs to be used and we find the Eigen-vectors.  
- The shear stresses are found as: 

𝜏1
2⁄ =  

𝜎1 − 𝜎2

2
, 𝜏2

3⁄ =  
𝜎2 − 𝜎3

2
, 𝜏1

3⁄ =  
𝜎1 − 𝜎3

2
 

Where the maximum shear stress is 𝜏1
3⁄  

 3D states of stress are not common in machine elements 
except for the case of contact stress. 

 The 3D Mohr’s Circle can be drawn for any state of plane stress knowing that 
one of the three principal stresses is equal to zero. 

Strain 

Strain is a non-dimensional measure of the deformation resulting from the stresses 
acting upon a solid material. 

There are two types of strain: 

Normal strain Є where it measures the change 
in length resulting from normal stress. 

 𝜖𝑥 =
𝛿𝑥

𝑙𝑥
      &    𝜖𝑦 =

𝛿𝑦

𝑙𝑦
   

Shear strain 𝜸 where it measures the angular distortion (the change in angle) 
resulting from shear stress. 

 𝛾𝑥𝑦 =
𝛿𝑥

𝑦
= tan 𝜃𝑦𝑥 ≅  𝜃𝑥𝑦 

For small strains 

σ1 > σ2 > σ3 
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 In the Elastic region under uniaxial stress condition or pure shear stress 
condition, the stress and strain are related as: 

 𝜎 = 𝐸𝜖  

 𝑣 =  
− 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛

𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛
 

 𝜏 = 𝐺𝛾    where  𝐺 =  
𝐸

2(1+𝑣)
 

 For biaxial or triaxial state of stress, these relations are not valid and the 
generalized hook’s law is used to relate stresses and strain. 
- See the generalized Hook’s law equations in text (Eqn. 3-19, page 102). 

 

Uniformly Distributed Stress 

The assumption of uniformly distributed stress is often made in design when loading is 
simple such as pure tension, compression or shear. 

 For tension or compression  
   

        𝜎 =  
𝐹

𝐴
   (+) For Tension  

  (-) For compression 
 
* The load should be Centroidal or Symmetric.  
 

 

 

 For shear 

  𝜏 =
𝐹

𝐴
   

The section should 

be taken away from 

the ends 
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Normal Stress in Beams 

Beam bending stress equation (flexure formula) is developed under the following 
assumptions: 

- The beam is straight, long and having a constant cross-section with an axis 
of symmetry in the plane of bending. 

- The material is isotropic, homogeneous, and linearly elastic. 
- The beam is subjected to pure bending moment (no axial force, shear or 

torsion). 

The bending stress in beams subjected to bending moment is found as (see derivation 
in text): 

𝜎 =  −
𝑀𝑦

𝐼
 

Where,  𝑦: is the height from the neutral axis (centroidal axis) 
 𝐼: is the moment of inertia about the 𝑧 axis 

The maximum tensile and compressive stresses are at the top and bottom surfaces. 

- The maximum bending stress in the beam is usually found using: 
 

𝜎 =  
𝑀𝑐

𝐼
 

or sometimes it is written as: 

𝜎 =  
𝑀

𝑍
 

 
 

 Tables A-6, A-7 and A-8 in the text give the 𝐼 and 𝑧 values for some standard 
cross-section beams.  

Q: When to use 𝐼 and when to use 𝑍? 

A: in general, it can be said that the 𝑍 is more convenient to use when you are 
designing based on stress while the 𝐼 is used when you are designing based on 
deflections.  

 

where 𝑐 = 𝑦𝑚𝑎𝑥 

𝑦𝑐𝑐𝐼𝐼Type equation here. 

 
where 𝑍 =

𝐼

𝑐
 is called 

the Section Modulus 
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�̅� =
𝐴1�̅�1 − 𝐴2�̅�2

𝐴1−𝐴2
 

 

 

 Locating the neutral axis and finding the moment 
of inertia for composite areas (cross-sections): 
- Centroid  

�̅� =
𝐴1�̅�1 + 𝐴2�̅�2 + ⋯

𝐴1+𝐴2 + ⋯
 

 
 
 

- Moment of inertia 
When the axis is not passing through the 
centroid of an area, we use the parallel 
axis theorem. 

 

 𝐼𝑥 =  𝐼�̅� + 𝐴�̅�2   

 

 

 Table A-18 in the text gives the geometric properties of some shapes.  

 

Example: A C-channel beam is to be used to support 
the loading shown. Choose an appropriate standard 
size from Table A - 7 such that the maximum 
bending stress is not to exceed 250 MPa. 

Solution:                        

∑ 𝐹𝑦 = 0    →    𝑅 = −100 𝑁 = 100 𝑁 ↓ 

∑ 𝑀 = 0   →    −𝑀 + 800 − 600(1) + 500(2) = 0 

→      𝑀 = 1200 𝑁. 𝑚 
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    𝜎𝑚𝑎𝑥 =
𝑀𝑚𝑎𝑥

𝑍
 

   𝑍 =
𝑀𝑚𝑎𝑥

𝜎𝑚𝑎𝑥
=  

1300 (𝑁.𝑚) × 1000 (
𝑚𝑚

𝑚
)

250 (
𝑁

𝑚𝑚2)
 

 𝑍 = 5200 𝑚𝑚3 = 5.2 𝑐𝑚3 

with Z2-2  ≥  5.2 cm3 

 From Table A-7 choose the beam having 

a = 102 mm, b = 51 mm & Z2-2  =8.16 cm3 

 

 

Shear Stress for Beams in Bending 

It is rare to encounter beams subjected to pure bending momet only (no shear). Most 

beams are subjected to both shear forces and bending moments. 

Though the flexure formula (beam bending stress equation) was developed based on 

the assumption of pure bending moment only, yet it holds reasonably accurate with 

the presence of shear forces. 

 For a beam subjected to shear force, the shear stress is found as (see 

derivation in text):  

𝜏 =  
𝑉𝑄

𝐼𝑏
 

where, 

- 𝑉: is the shear force at the section of interst. 

- 𝑄: is the first moment of inertia at the height where 𝜏 is determined. 

- 𝐼: is the section moment of inertia. 

- 𝑏: is the width at the point where 𝜏 is determined. 
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 The first moment of inertia, 𝑄 , is found as:  

𝑄 = �̅�′𝐴′  

- where 

 𝐴′ is the area of the portion of the section above or below the 

point where 𝜏 is determined. 

 �̅�′ is the distance to the centroid of the area 𝐴′ measured from 

the neural axis of the beam. 
 

 The shear stress 𝜏 is maximum at the neutral 

axis (since 𝑄 will be max), and it is zero on the 

top and bottom surfaces (since 𝑄 is zero).  

 

Example: An overhanging simply supported beam 

having a T-shaped cross section carries 4 kN load as 

shown. Determine:  

a) The maximum bending stress 

b) The maximum shear stress 

c) The state of stress at point “D” 

Solution:  
                 ∑ 𝑀𝐴 = 0  RB = 6 kN 
                  ∑ 𝐹𝑦 = 0             RA = -2 kN 

 

 

 

 

 

  

 

 

 

 Neutral Axis: 
 

�̅� =
𝐴1�̅�1 + 𝐴2�̅�2

𝐴1+𝐴2
 

�̅� =
90(20 × 100) + 40(80 × 20)

(20 × 100) + (80 × 20)
 

 

      �̅� = 67.8 𝑚𝑚 



Shigley’s Mechanical Engineering Design, 10th Ed.      Class Notes by:  Dr. Ala Hijazi 

CH 3 (R1)          Page 17 of 30 

 Moment of inertia about the neutral axis: 

 

𝐼 = 𝐼1 + 𝐼2 = (𝐼1̅ + 𝐴1�̅�1
2) + (𝐼2̅ + 𝐴2�̅�2

2)  

=
1

12
(100)(20)3 + (20 × 100)(22.2)2 +

1

12
(20)(80)3 + (20 × 80)(27.8)2 

                   𝐼 = 3.142 × 106 𝑚𝑚4  

a) Max bending stress on the lower surface at “B” 

 

𝜎 =
𝑀𝑐

𝐼
=

(4 × 106)(67.8)

3.142 × 106
= 86.31 𝑀𝑃𝑎 

 
 

b) Max shear force between “B” and “C”   

            & Max shear stress at the neutral axis 

 

𝑄𝑁.𝐴. = �̅�′𝐴′ = 33.9(20 × 67.8) = 45968 𝑚𝑚3 

 

𝜏𝑚𝑎𝑥 =
𝑉𝑄𝑁.𝐴.

𝐼𝑏
=

(4 × 103)(45968)

(3.142 × 106)(20)
= 2.93 𝑀𝑃𝑎 

 

c) Stress at “D” 

VD = 4 kN 

MD = -2.8 kN.m 
 

 

 

 

 

  

 

Shear Stress in Standard Section Beams 

𝜎𝐷 = −
𝑀𝑦

𝐼
= −

(−2.8 × 106)(−37.8)

(3.142 × 106)
= −33.7 𝑀𝑃𝑎 

𝜏𝐷 =
𝑉𝑄

𝐼𝑏
=

(4 × 103)(31680)

(3.142 × 106)(20)
= 2.02 𝑀𝑃𝑎 

 

or  
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When desiging a machine element we always look at the maximum stress to ensure 
the safety of the element. 

In beams, the maximum shear stress is located at the neutral axis (since 𝑄 is max at the 
N.A.). 

 The maximum shear stress for some standard sections is found to be: 
 

- Rectangular                  𝜏𝑚𝑎𝑥 =
3𝑉

2𝐴
   

 

- Circular                    𝜏𝑚𝑎𝑥 =
4𝑉

3𝐴
 

 
 

- Hollow-round (thin welled)        𝜏𝑚𝑎𝑥 =
2𝑉

𝐴
 

 

 

- I-beam (thin welled)      𝜏𝑚𝑎𝑥 =
𝑉

𝐴𝑤𝑒𝑏
 

      

Torsion 

When the moment vector is colinear with the axis of an element, it is called a torque 
vector since it causes the element to be twisted, and the elemet is said to be in torsion. 

 When a circular shaft is subjected to torque, the shaft will be twisted and the 
angle of twist is found to be: 

𝜃 =
𝑇𝐿

𝐺𝐽
 

Where  
 𝑇: Torque, 𝐿: Length, 𝐺: Modulus of 

rigidity 𝐺 =  
𝐸

2(1+𝑣)
 &  𝐽: Polar moment of 

inertia. 
 

where 

- 𝐽 =
𝜋

32
𝑑4                     

- 𝐽 = 
𝜋

32
(𝑑𝑜

4 − 𝑑𝑖
4)       for hollow round sections 

Flange 

Web 
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 From geometry, the shear strain at any distance from the center (𝜌) can be 
related to the angle of twist as: 

𝛾 =
𝜌𝜃

𝐿
      (assuming small angles) 

And maximum shear strain occurs at the outer surface 

       𝛾𝑚𝑎𝑥 =
𝑟𝜃

𝐿
 

 Since shear stress and strain are linearly related in the elastic region (𝜏 = 𝐺𝛾), 
the shear stress at any radius “𝜌” is found to be: 

                                               𝜏 =
𝑇𝜌

𝐽
 

And the maximum is at the outer surface,  

𝜏𝑚𝑎𝑥 =
𝑇𝑟

𝐽
  

 
For rectangular cross-sections, the maximum shear stress is found as: 

𝜏𝑚𝑎𝑥 =
𝑇

𝑏𝐶2
(3 +

1.8

𝑏
𝑐⁄

)  

where “𝑏” is the longest side 

 

In machin design applications, usually the torue is not given, but rather the transmitted 
power and rotational speed. 

 To find the torque:  

   𝐻 = 𝑇𝜔  

 

 

Torsion of closed thin-walled tubes (t << r) 

Which section is better for 

carrying torque, solid or hollow? 

See Examples 3-8 & 3-9 from text 

 

𝐻: Power (𝑊𝑎𝑡𝑡)   

𝑇: Torque (𝑁. 𝑚)  

𝜔: Angular velocity (𝑟𝑎𝑑/𝑠) 
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For closed thin-walled tubes (of any shape) the shear stress is asuumed to be constant 
through-out thickness. 

 

 The shear stress is found as:  

𝜏 =
𝑇

2𝐴𝑚𝑡
 

And, for constant wall thickness, the angle of twist per unit length ( 𝜃𝑙 =
𝜃

𝐿
 ) is 

found to be: 

𝜃𝑙 =
𝑇𝐿𝑚

4𝐺𝐴𝑚
2 𝑡

 

 

 

Stress Concentration 

The presence of discontinuities (such as a hole in a plate) alters the stress distribution 
causing higher stress near the discontinuity. Any type of discontinuity (hole, shoulder, 
notch, inclusion) serve as a stress raiser where it increases the stress in the vicinity of 
the discontinuity. 

- Stress concentration occures at the region in which 
stress raisers are present, and a stress concentration 
factor (𝐾𝑡) is used to relate the actual maximum stress 
at the discontinuity to the nominal stress without the 
discontinuity.  

𝐾𝑡 =
𝑎𝑐𝑡𝑢𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑡𝑟𝑒𝑠𝑠

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠
=

𝜎𝑚𝑎𝑥

𝜎𝑜
 

 

 Stress concentration factors are independent of the material properties (as 

long as the material is in the linear elastic region). They depend only on the 

type of discontinuity and the geometry. 

where 𝐴𝑚 is the 

area enclosed by the 

section mean line 

where 𝐿𝑚 is the 

perimeter of the 

section mean line 

See Example 3-10 from text 
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One of the theoretical stress concentration factors is that of an 

elliptical hole in an infinite plate loaded in tension which is given as:  

𝐾𝑡 = 1 + 
2𝑏

𝑎
 

- Thus, if the hole is circular (𝑎 = 𝑏 ) in an infinite plate then 𝐾𝑡 = 3 

However stress concentration factors are very difficult to find using theoretical 

analysis, and usually they are found experimentally (using photoelasticity) or using 

finite element analysis and they are usually presented in charts for different geometric 

and loading configurations in specialized books (such as the Peterson's Stress 

Concentration Factors). 

 Tables A-15 & A-16 in the text give the stress concentration factors for some 
geometric and loading configurations.  
 

 When using stress concentration factors from charts you should 

be careful to how 𝐾𝑡 is defined (with respect to stress in the net 

area or the total area).  

- 𝜎𝑜 =  
𝑃

𝑤𝑡
  

   𝑜𝑟  

- 𝜎𝑜 =  
𝑃

(𝑤−𝑑)𝑡
   

 

 When dealing with brittle materials it is very important to consider the stress 

concentrations because rupture will initiate there and the entire part will fail, while 

for ductile materials stress concentrations are usually not considered because the 

material will yield at the high stress location and this relieves the stress 

concentration. 

 

Stress in Pressurized Cylinders 

Examples of pressurized cylinders include pressure vessels, hydraulic or pneumatic 

cylinders, gun barrels and pipes carrying high pressure fluids 

Net area 

Total area 
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When there is a pressure difference between the inside and outside of the cylinder, 

stresses develop in both the radial and tangential directions. 

 The tangential and radial stresses (at any radial 

distance “𝑟”) are founds as: 

𝜎𝑡 =
𝑃𝑖𝑟𝑖

2−𝑃𝑜𝑟𝑜
2−𝑟𝑖

2𝑟𝑜
2(𝑃𝑜−𝑃𝑖)/𝑟2

𝑟𝑜
2−𝑟𝑖

2  

                            𝜎𝑟 =
𝑃𝑖𝑟𝑖

2−𝑃𝑜𝑟𝑜
2+𝑟𝑖

2𝑟𝑜
2(𝑃𝑜−𝑃𝑖)/𝑟2

𝑟𝑜
2−𝑟𝑖

2  

 When the external pressure equals zero (𝑃𝑜 = 0) 

the equations reduce to: 

 𝜎𝑡 =
𝑃𝑖𝑟𝑖

2

𝑟𝑜
2−𝑟𝑖

2 (1 +
𝑟𝑜

2

𝑟2)   

 𝜎𝑟 =
𝑃𝑖𝑟𝑖

2

𝑟𝑜
2−𝑟𝑖

2 (1 −
𝑟𝑜

2

𝑟2)  

 

 If the vessel is close-ended, the longitudinal (axial) stress is found as: 

         𝜎𝑙 =
𝑃𝑖𝑟𝑖

2

𝑟𝑜
2−𝑟𝑖

2               (uniform stress) 

Thin-walled cylinders 

When the wall thickness is small compared to the radius (𝑡 ≤
𝑟𝑖

20
 ), the radial stress is 

very small and it is assumed to be zero (𝜎𝑟 = 0) and the tangential stress is 
approximately uniform and it is found as:  

                               𝜎𝑡 =
𝑃𝑑𝑖

2𝑡
 

and for close ended vessels the longitudinal stress is: 

                              𝜎𝑙 =
𝑃𝑑𝑖

4𝑡
 

 

 

Applicable for both  

𝑃𝑖> 𝑃𝑜 and 𝑃𝑜> 𝑃𝑖  

Where the maximum is at 𝑟 = 𝑟𝑖   

(𝜎𝑟)𝑚𝑎𝑥 = −𝑃𝑖  

See Example 3-14 from text 
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Press and Shrink Fits  

When two parts are assembled by shrink or press fitting, contact pressure is created at 

the interface between the two parts. 

The magnitude of the contact pressure depends 

on the amount of interference of the fit where 

the deformation of the two parts is equal to the 

interference.  

 For two rings made out of the same 

material, the contact pressure is found to be: 

                     𝑃 =
𝐸𝛿

𝑅
[
(𝑟°

2 − 𝑅2)(𝑅2 − 𝑟𝑖
2)

2𝑅2(𝑟°
2 − 𝑟𝑖

2)
]  

where, 𝑅: is the common radius and 𝛿: is the radial interference 

- The two elements are assumed to have the same length.  

If not (such as a hub that is press fitted on a shaft) an increased pressure is developed 

at the ends, and a stress concentration factor is used to account for that. 
 

Stress in Rotating Rings 

When elements such as flywheels, gears, blowers rotate at high angular velocities, 

significant stresses develop in the element due to the centrifugal force. 

 Such elements are simplified to a rotating ring in order to 

determine the stresses. 

 The stress has two components, tangential and radial. The 

stresses (at any radial distance “𝑟”) are found as:  

                      𝜎𝑡 =  𝜌𝜔2 (
3+𝑣

8
) (𝑟𝑖

2 + 𝑟𝑜
2 +

𝑟𝑖
2𝑟𝑜

2

𝑟2
−

1+3𝑣

3+𝑣
𝑟2)  

                     𝜎𝑟 =  𝜌𝜔2 (
3+𝑣

8
) (𝑟𝑖

2 + 𝑟𝑜
2 −

𝑟𝑖
2𝑟𝑜

2

𝑟2
− 𝑟2)  

  where, 𝜔: angular velocity and 𝜌: density 

 For a rotating disk, use 𝑟𝑖 = 0 

For constant “𝑡” 

and 𝑟𝑜  ≥  10𝑡 

Stress initially increases with 

increasing “𝑟” then it decreases 
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Temperature Effects  

When an unrestrained body is subjected to a temperature increase, the body expands 

and the normal strain is: 

                                           𝜖𝑥 = 𝜖𝑦 = 𝜖𝑧 = 𝛼(∆𝑇) 

where, 𝛼: is the coefficient of thermal expansion (Table 3-3 in text) and ∆𝑇: is 

the temperature change. 

If the body is restrained in any direction, stress will develop in that direction. 

 For a bar with restrained ends, the axial stress is found as: 

                                        𝜎 = −𝜖𝐸 = −𝛼(∆𝑇)𝐸 

 

 Similarly , for a plate restrained at all edges, it will have compressive  stress in 

both directions: 

                                           𝜎 = −
𝛼(∆𝑇)𝐸

1 − 𝜐
 

Thermal stresses usually occur during welding or any restrained member subjected to 

temperature change during operation.  

 

Curved Beams in Bending  

When a curved beam (having a symmetric section 

with respect to the plane of bending) is subjected to 

bending moment, bending stress will develop in the 

beam similar to straight beams. However, there are 

two basic differences: 

- The neutral axis does not coincide with the 

centroidal axis. 

- The stress doses not vary linearly from the 

neutral axis. 

Compressive stress 

(+) 𝑀: Decreases the curvature         

(+) 𝑦: Towards the center of curvature 
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 The location of the neutral axis with respect to the center of the curvature is 

found as: 

                                      𝑟𝑛 =
𝐴

∫ 𝑑𝐴
𝑟

 

where 𝐴: is the cross-sectional area  

 The stress at any distance “𝑦” from the neutral axis is found as: 

                                 𝜎 =
𝑀𝑦

𝐴𝑒(𝑟𝑛 − 𝑦)
 

where 𝑒: is the distance from the centroidal axis to the neutral  axis 

(eccentricity)    𝑒 = 𝑟𝑐 − 𝑟𝑛 

 The maximum tension and compression stresses occur at the inner and outer 

surfaces, 𝑦 = 𝑐𝑖 & 𝑦 = 𝑐𝑜 

                                         𝜎𝑖 =
𝑀𝑐𝑖

𝐴𝑒𝑟𝑖
            &         𝜎𝑜 = −

𝑀𝑐𝑜

𝐴𝑒𝑟𝑜
 

 

Note: These equations assume pure bending only (pure moment). 

If the moment is resulting from a force applied to 

one side of the section, such as the case of a hook, 

the moment is computed about the centroidal axis 

not the neutral axis, and the additional axial stress 

is added to the bending stress. 

 

 

 Note that in the example, the tensile stress at the inner surface is three times 

greater than the compressive stress at the outer surface, which is not an 

effective use of the material. Thus, it is better to use more material at the inner 

radius than at the outer radius (to reduce the max. stress at the inner surface). 

Usually, “T” or unsymmetric   “I” cross-sections are used for curved beams in 

bending. 

Stress distribution 

is hyperbolic 

See Example 3-15 from text 
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 Table 3-4 gives 𝑟𝑐 and 𝑟𝑛 values for some of the cross-sections usually used 

for curved beams. 

 

Approximate Calculations 

Since calculating 𝑟𝑛 is relatively difficult for complex cross-sections, an approximate 

solution can be used to find the value of 𝑟𝑛 . However, one should be careful since 

(𝑒 = 𝑟𝑐 − 𝑟𝑛), a small error in 𝑟𝑛 will lead to large error in 𝑒 (because 𝑒 is small 

compared to 𝑟𝑐 & 𝑟𝑛 ) and that will cause a large error in the stress value (since 𝑒 is in 

the denominator). 

 An approximate estimate of the stress can be found as: 

         𝑒 ≈
𝐼

𝐴𝑟𝑐
                𝜎 =

𝑀𝑠

𝐼

𝑟𝑐

𝑟
 

where “𝑠” is the distance from the centroidal axis. 

- This approximate is accurate only when the radius “𝑟𝑐” is large compared to the 

beam depth “h”(r >>h). 

 

Example: For the hook in example 3-15, take the outer radius “𝑟𝑜” to 
be 400 𝑚𝑚. 
Find the maximum bending tensile stress at the inner surface using:  

a) Exact calculations. 
b) Approximate calculations and compute the error.  

Solution: 

a)               𝑟𝑛 =
ℎ

𝑙𝑛
𝑟°
𝑟𝑖

=
100

𝑙𝑛
400

300

= 347.6 𝑚𝑚 

    𝑟𝑐 = 300 +
100

2
= 350 𝑚𝑚 

    𝑒 = 𝑟𝑐 − 𝑟𝑛 = 2.4 𝑚𝑚  

   𝐴 = 100 ∗ 18 = 1800 𝑚𝑚2 
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                       𝑀 = 22000 ∗ 350 = 7.7 × 106 𝑁. 𝑚𝑚 

                            𝜎 =
𝑀𝑦

𝐴𝑒(𝑟𝑛−𝑦)
                                Inner surface:  𝑦 = 𝑐𝑖 = 𝑟𝑛 − 𝑟𝑖 

                        𝜎𝑖 =
7.7×106(47.6)

1800(2.4)(300)
= 282.8 𝑀𝑃𝑎  

 

b)              𝜎 =
𝑀𝑠

𝐼

𝑟𝑐

𝑟
      ,    𝑠 = 50 𝑚𝑚 ,   Inner surface: 𝑟 = 𝑟𝑖 = 300 𝑚𝑚                                                          

                                              𝐼 =
1

12
𝑏ℎ3 =

1

12
18(100)3 = 1.5 × 106 𝑚𝑚4 

                       𝜎𝑖 =
7.7×106(50)

1.5×106

350

300
= 299.4 𝑀𝑃𝑎     

 

                        %𝐸𝑟𝑟𝑜𝑟 =
299.4−282.8

282.8
∗ 100% = 5.9 %    

 

 

Numerical Calculations 

For non-regular cross-sections, 𝑟𝑛can be found using numerical approximation to 

evaluate the integration by discretizing the cross-sectional-area (dividing the area into 

rectangles of small thickness) where: 

                          𝑟𝑐 =
∑ 𝑟𝑏∆𝑠

∑ 𝑏∆𝑠
 

                        𝑒 =
∑

𝑠
𝑟𝑐 − 𝑠

 𝑏 ∆𝑠

∑
𝑏∆𝑠

𝑟𝑐 − 𝑠

 

 𝑟𝑛 = 𝑟𝑐 − 𝑒           Then continue as usual 

- Note that this method is accurate provided that the section is divided into a 

sufficient number of rectangles. 
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Contact Stress 

When two bodies having curved surfaces are pressed against each other, the point or 

line contact changes to area contact. The area of contact depends on the force, the 

geometry of the two bodies, and the material the bodies are made of. As a result of 

the contact, three-dimensional state of stress develops at the area of the contact and it 

might lead to cracking or flaking or similar type of surface failure. 

- Examples of contact-stress problems are: wheel on rail, cam and follower, gear 

teeth contact, etc. 

The contact-stress equations were developed by Hertz and they are usually called 

Hertzian stresses. 

 

Spherical Contact  

When two spheres of diameters 𝑑1 & 𝑑1 made from two different 

materials (having 𝐸1, 𝜐1& 𝐸2, 𝜐2) are pressed against each other with 

force 𝐹, the contact area will be circular with a radius of “𝑎” which is 

found as: 

                  𝑎 = [
3𝐹

8

(1−𝜐1
2)/𝐸1+(1−𝜐2

2)/𝐸2

1/𝑑1+1/𝑑2
]

1/3

   

 

 The resulting pressure distribution is hemispherical and its 

maximum value is: 

                                    𝑃𝑚𝑎𝑥 =
3𝐹

2𝜋𝑎2
  

           And the principal stresses are found as: 

                    𝜎1 = 𝜎2 = 𝜎𝑥 = 𝜎𝑦 = −𝑃𝑚𝑎𝑥 [(1 − |
𝑧

𝑎
| 𝑡𝑎𝑛−1 1

|𝑧/𝑎|
) (1 + 𝜐) −

1

2(1+
𝑧2

𝑎2)
] 

                    𝜎3 = 𝜎𝑧 =
−𝑃𝑚𝑎𝑥

1+
𝑧2

𝑎2

    

 

For flat surface:  𝑑 = ∞ 

For internal surface: 𝑑 is negative 

The maximum 

value of the stress 

For the sphere that 

is being considered 
where 𝑧 is the distance 

from the surface (depth)  

Compressive 

stresses 
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And the maximum shear stress is: 

                            𝜏𝑚𝑎𝑥 =
𝜎1−𝜎3

2
=

𝜎2−𝜎3

2
 

 

 The principal stresses are maximum at the 

surface and decrease as depth increases, 

while the maximum value of shear stress 

occurs below the surface at 𝑧 ≅ 0.5𝑎 

  

 

Cylindrical Contact  

For cylinders in contact, the contact area will be rectangular 

with length “𝐿” and width “2𝑏” where:  

                  𝑏 = [
2𝐹

𝜋𝐿

(1−𝜐1
2)/𝐸1+(1−𝜐2

2)/𝐸2

1/𝑑1+1/𝑑2
]

1/2

 

And the maximum pressure is: 

                   𝑃𝑚𝑎𝑥 =
2𝐹

𝜋𝑏𝐿
 

And the state of stress is given as: 

             𝜎𝑥 = −2𝜐𝑃𝑚𝑎𝑥 (√1 +
𝑧2

𝑏2

2

− |
𝑧

𝑏
|) 

             𝜎𝑦 = −𝑃𝑚𝑎𝑥 (
1+2

𝑧2

𝑏2

√1+
𝑧2

𝑏2

2
− 2 |

𝑧

𝑏
|) 

             𝜎3 = 𝜎𝑧 =
−𝑃𝑚𝑎𝑥

√1+𝑧2/𝑏22  

 

This causes cracks to 

initiate below surface  

The maximum 

value of the stress 

Compressive 

stresses 
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And the maximum shear is found as: 

𝜏𝑚𝑎𝑥 = {
 
𝜎𝑥−𝜎𝑧

2
        𝑓𝑜𝑟   0 < 𝑧 < 0.436 𝑏 

𝜎𝑦−𝜎𝑧

2
         𝑓𝑜𝑟        𝑧 ≥ 0.436 𝑏  

 

 

 

 

 

Hertz equations are valid if the contact surface is free of shear stress (𝐹 only). 

 Situations such as gear teeth contact, wheel on rail, etc., involve significant shear 

force on the contact area and the state of stress can be found more accurately 

using the “Smith-Liu equations”.    

 

0.436 𝑏      


